AFRL-VS-PS-TR-1998-1070 - AFRL-VS-PS-
TR-1998-1070
|

UNIFORM INTERFACE FOR MULTIPLE SATELLITE
SYSTEMS STUDY

Gloria Connor
John Forrest Harrell

GenCorp Aerojet

P. O. Box 296

1100 West Hollyvale Street
Azusa, CA 91702

August 1998

Final Report

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
3550 Aberdeen Ave SE

- AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

19990203 091

DTIC QUALITY INSPECTED -3

AFRL-VS-PS-TR-1998-1070

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data, does not license the holder or any other person or corporation; or
convey any rights or permission to manufacture, use, or sell any patented invention that may
relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public,

including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization no
longer employs the addressee, please notify AFRL/VS, 3550 Aberdeen Ave SE, Kirtland
AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

GEORGE S. SCHNEIDERMAN
Project Manager

FOR THE COMMANDER

/Mz%///

KEITH SHROCK, D-III CHRISTINE ANDERSON, SES, USAF
Acting Chief, Space Sensing and Director, Space Vehicles Directorate (VS)
Vehicle Control Branch

REPORT DOCUMENTATION PAGE oG e or8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
27 August 1998 Final Report - 8 May 1997 through 4 June 1998

4. TITLE AND SUBTITLE
Uniform Interface for Multiple Satellite Systems Study

5. FUNDING NUMBERS
F29601-97-C-0051

PE: 63401F
PR: 2181
6. AUTHOR(S) TA: TC
Gloria Connor wWu: 02
John Forrest Harrell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

GenCorp Aerojet Report 11173

P. O. Box 296

1100 West Hollyvale Street

Azusa, CA 91702-0296

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
Air Force Research Laboratory AFRL-VS-PS-TR-1998-1070
Space Vehicles Directorate
AFRL - VSS-Satellite Control
3550 Aberdeen Ave SE

Kirtland Air Force Base, NM 87117-5776

11. SUPPLEMENTARY NOTES
None

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This report attempts to model a multi-satellite ground telemetry processing system (MSG) for reducing the level of effort associated
with extending a system to supporting new satellites. The use of object-oriented (OO) hierarchy and abstraction alone does not
sufficiently reduce the inherent complexity of a MSG due to the number and diversity of classes required to support such a system.
This approach reduces the potential for multiple branches and layers of subclasses without losing generality and thus maximizes code
reuse. The model was developed using ordinary, well documented OO patterns combined with a novel approach for retrieving class
attributes external to the source code. A database management system with database and query language capabilities is used for
retrieving attributes during system initialization. This allows chaining classes together for building a processing structure without
hard-coding anything more than the abstract classes being used. A simplified version of the model was tested in the ‘proof-of-concept’
and shown to work correctly. In this test, it was possible to support a new satellite just by inserting attribute information into the
database without any recompilation of the code.

14. SUBJECT TERMS

15. NUMBER OF PAGES
Object-oriented design, satellite ground control, satellite status, relational databases 46

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 238-18
298-102 :

ii

Report 11173

TABLE OF CONTENTS

Introduction

Objectives and Scope -
Notation

Approach to Developing a Model

Assumptions
Conventions

Model

Analysis

Design

Framework
Test (Proof of Concept)

Description

Model

Results and Lessons Learned
Conclusions

Bibliography

Glossary

ii

Report 11173

Page

DON = -

\l

11
22

32
32
32
35
36
37

38

N =

FIGURES

UML Notation

“Factory Class” - A Modified Factory Design Pattern For
Instantiating Classes

System Interfaces

Back End Processing

Sequence Diagram For The Back End

DEAD - For Extracting and Decommutating (Class Model)

DEAD - Build Phase (Object Model)

DEAD - Process Phase (Object Model)

DMAD Abstract Class Model

DMAD Display Formatting (Abstract Class Model)

. DMAD - Chain Segment & Offshoots (Abstract Class Model)
. DMAD Chain Segment & Offshoots For List Display Formatting

(Class Model)

. DMAD - Build Phase (Object Model)
. DMAD - Process Phase (Object Model)
. Framework

Framework Class Inheritance
Class Inheritance For ChainProcess
Proof-of-Concept Demonstration (Class Model)

. Proof-of-Concept Demonstration - Build Phase

(Object Model For DSP)

. Proof-of-Concept Demonstration - Process Phase

(Object Model For DSP)

iv

Report 11173

Report 11173

Introduction
1.1 Objectives and Scope

The objectives of this report are to document an object oriented model
developed at Aerojet for a multiple satellite system. The model was developed
for the purpose of simplifying the process of extending the Multi-mission
Advanced Ground Intelligent Control (MAGIC) System software to new
applications and for supporting new satellites. The model includes an analysis of
the domain, a design for multiple satellites, a framework for expanding MAGIC'’s
functionality and analysis of extensibility based on Aerojet’s analysis of the
domain.

The study of the domain leading to the development of a model, is limited to
health monitor processing of Electrical Power Distribution Subsystems (EPDS)
and Attitude and Control Subsystems (ACS) for the Defense Support Program
(DSP) and (UFO) satellites rather than the entire domain of MAGIC. The model
itself is developed only for ground telemetry processing and avoids the area of
middleware, which is covered in a separate report titled “Controller and
Communications Middleware Survey and Evaluation For the Next-Generation,
Common Satellite Ground Station”.

Note even though the MAGIC system no longer exists the objectives are still the -
same.

1.2 Notation

Universal Modeling Language (UML) notation is used for illustrating the analysis
and design described in this report. See Figure 1 for the symbols used in this
report.

Report 11173

.|® Thisis a note

<<stereotype>>

:class name

Composite

Figure 1. UML Notation

1.3 Approach Used For Developing Model
1.3.1 Overview

The basic approach decided upon for developing a model for the MAGIC domain
is to generalize and parameterize classes, where applicable, to avoid a large
number of subclasses and use a DBMS to store and retrieve class attributes.

To achieve generalization, subclass behavior is designed into a class's member

variables or attributes rather than modifying or adding member functions through
subclassing. Each set of attribute values that defines some specific behavior is
stored in the database during the software development phase and retrieved by

the software at runtime.

In a relational database, a set of values may be stored in a row of a table whose
fields map back to the member variables of a class. In an object oriented
database, objects could be set for specific behavior, stored in the database and
used during runtime for replicating that behavior. In either case, an index may
be used to represent a specific behavior for a class which can be used to query
the database for retrieving the row or object.

Report 11173

An instantiation of a class and a set of attributes describing subclass-like
behavior is referred to in this report as an ‘object instance’.

1.3.2 Generalize Classes

The purpose of generalizing is to reduce the effort of writing new specialized
code, improve reuse and in the author's opinion, reduce the overall volume of
code. If complexity is not introduced through generalization, a smaller volume of
code should reduce the amount of time spent on software development, testing,
and later, maintenance. The tradeoff to generalization is, to some degree, a loss
of flexibility. This means the analysis of the domain must be carefully made or
flexibility built in through another means.

An example of how generality is applied to the design described later in this
report, is where a potentially huge set of highly specialized channel extraction
subclasses were avoided in favor of one generic and relatively simple channel
extraction class.

1.3.2.1 Strategy and Bridge Design Patterns

The "Strategy" and "Bridge" design patterns are used to hide implementation
from within the generalized class. These patterns move specific implementation
from the subclass and member functions, into another class hierarchy which can
be used polymorphically by the generalized class.

1.3.2.2 Run Time Type Information (RTTI)

Classes and subclasses, used by generalized classes in the "Bridge" or
"Strategy" design pattern, may be represented as integers and assigned to
member variables so that the subclass is completely hidden from the generalized
class.

Recent versions of C++ compiler provide run-time type identification (RTTI) and
support for RTTI. These new features support converting data types and class
types into integers and back again, which simplifies and improves our model.
However, RTTI values change from one compilation to the next and therefore
must not be saved in the database without updating the database after every
compilation. A small code change to avoid updating the database, is possible
but not described in detail here. Since RTTI was not available for developing the
‘proof of concept’ demonstration, integer values were simply hard coded and a
switch statement used for instantiating the correct class.

Report 11173

1.3.2.3 Factory Design Pattern

A modified version of the "Factory" design pattern is used to instantiate and
initialize classes whose types are represented by integers and return an abstract
pointer of the new object back to the class calling Factory where it may be used
polymorphically.

This approach lends itself to completely hiding subclasses and future subclasses
from the classes using the Factory for this purpose. Figure 2 illustrates how
Factory is used by the proposed framework for instantiating classes

[STEP 1]
<some class> g class type &
g index
call init() init() R T —
to get object ptr
to another] :
level of R [STEP 5)
objects
[STEPS 2]
1) create object &
[STEP 6] 2) pass tablename for
call init() this class type plus
using new row index.
ptr
¢ “MyAbsType”
t
H Superclass to all
1 classes created by
! Facto;
' cconnapond """ s [STEP3]
T_: . _Query |
[g
| <any class d ded ” DbmsIf
i from “MyAbsType™ § attributes
g [STEP4]
Figure 2. “Factory Class” - A Modified Factory Design Pattern For Instantiating Classes.

1.3.2.4 Common Abstract Parent Class

All but a few classes in the proposed framework are derived from a common
abstract class to simplify the design in the "Factory” class.

1.3.2.5 Store Attributes In Database

Each set of values required to define an 'object instance’, is stored in a
database, outside the class code to promote a loosely coupled framework.

Report 11173

The classes where this may be applied are (a) extraction class types for storing
information such as bit length, and bit offset (b) display formatting classes for
storing titles, possibly screen layout, channel label strings, etc. and (c)
processing classes for storing alarm limits, and floating point coefficients.

1.3.2.6 "Chain of Responsibility" Design Pattern

Processing is decomposed into small steps such that the input stream may be
loosely coupled from the final display formatting step to promote better reuse of
the classes responsible for processing the data. This approach is similar in
concept only, to a design pattern known as "chain of responsibility".

1.3.3 DBMS Query Language

A DBMS query language is used to simplify both the design and development of
the system by providing the software with the ability to retrieve attributes from the
database for assigning behavior. As each set of attributes are retrieved,
additional layers of classes are revealed and in turn, instantiated and initialized
with attributes, so the query provides a mechanism for building a chain of
processing steps. Sometimes information about the input data must be joined
with other information for querying and building the model's structure.

The advantage is that it moves much of the work of extending a system, from
software development/maintenance to SQL or OQL. This approach should
reduce the time and simplify the effort of extending systems for new satellites. 1t
is conceivable that similar satellites added to the system, may only require
changes to data in the database and not even require recompilation of the
software.

Another advantage is the amount of coding necessary for linking lower level
processing steps to an architecture is reduced because the processing steps are
in a sense, recovered from the database through chaining attributes.

Another unexpected advantage is it simplifies operator setup since the operator
only needs to select an input source and the output (E.G., Display format
instance) and doesn’t need to know about the parameters or processing steps
for processing the data. The software and database will determine, for example,
which set of alarm limits or floating point coefficients to use or how the data
processing is to be customized for a particular instance of display format.

An advantage to using an established SQL or OQL (through DBMS APIs) to
query the database, is that the developers do not need to design and develop a
new method for accessing behavior attributes from say, a file or s/w table.

Report 11173

Integrity constraints, provided by some DBMS, may be used for validating SQL
insert statements entered during development and automatically add, delete, or
modify rows in tables as other rows are added, deleted, or modified in other
tables, by the user.

The disadvantage of a DBMS could be an apparent loss of performance during
real-time or near-real-time processing as the software waits for a reply to a
query. The model in this report performs all querying during an initialization
phase, before any processing occurs. In practice, this will require an operator to
allow sufficient time for system initialization before real-time satellite support
begins.

Note, a relational DBMS is used throughout this report for illustrating the
feasibility of the model. It is not the intention of this report to suggest an ODBMS
is less suitable than an RDBMS.

1.4 Assumptions
1.4.1 Data Not stored in Object Oriented Format

The design is based on an assumption that data is not stored in an object
oriented format. The design could easily be modified to allow for this but wasn’t
done here because it requires some thought about reprocessing data formatted
with older versions of object oriented data.

1.4.2 One Stream Input

For the sake of simplifying the discussion of Back End processing, the model in
this report assumes there is only one stream or data type per process, for the
most part. To handle multiple streams, small changes are needed to the model.

1.4.3 One DEAD For Each DMAD

For the same reason as above, the design appears to assume there is one
DEAD for each DMAD. Actually, the design doesn't prohibit multiple DMAD for
each DEAD but it does bring up several questions, one of which is the impact on
performance on other supported DMADs while handling new requests and
handling contradictory requests. In practice though, one DEAD for each DMAD
may be impractical and inefficient.

1.5 Conventions
With few exceptions, the naming convention used for subclasses in this report

and in the Proof-of-Concept is for the subclass to append a name string to the
end of the parent class name.

Report 11173

Model
2.1 Analysis

Figure 3 illustrates the major subsystems and their interfaces used for describing
the proposed analysis and design.

Sql

Qgegz Result Que;z

Utilities

request

Formatted
Display-
Ready Data

Displays

Figure 3. System Interfaces

2.1.1 Back End

Back End processing generally consists of near real-time health and sensor
monitoring and non-real-time modeling after the stream data has been
preprocessed (i.e., frame-synchronized, decoded, decrypted, time-tagged, etc.)
by the Front End.

Figure 4 illustrates Back End processing and major external interfaces.

Report 11173

Formatted
Display-
Ready Data

Displays

Figure 4. Back End Processing

The first of two major parts in the Back End will be called the Data Extraction and
Distribution (DEAD). This process is responsible for decommutating channels,
extracting frames, and sending channel and frame data to the second part of the
Back End which is Data Modeling and Display Formatter (DMAD).

The DMAD, is responsible for processing telemetry data and sending formatted
output to an external display process or a file. Processing in the DMAD includes
floating point conversion, alarm checking, formatting data for display, etc.

2.1.2 Displays

The displays could be a collection of display processes used for displaying
health and sensor data that were previously processed and formatted by the
Back End.

No attempt was made to seriously model a display in this report since it is
preferable to use a COTS package or one of the commercially available display
building tools, such as Visual C++ with MFC. Some of these tools are mainly
platform dependent, come in their own framework and use design patterns which
make it difficult to port classes from one set of tools to another (i.e., from one
platform to another).

Report 11173

2.1.3 Front End

Although the Front End was not originally included in the original domain
analysis, it would appear that the approach described for Back End, is applicable
to the Front End for the same reasons and benefits as the Back End. That is, we
should be able to generalize subclasses through storing attributes, such as sync
code, frame length, decoding method, in the database. On the other hand, it is
not fully understood how well the design will perform during real-time processing
because the front end may be less predictable and may require information from
the database for continued processing which may impact performance. For
example, most satellites can switch to an emergency mode without notice but
the framework presented in this report can only accommodate the requested
input data types. There are a few possible strategies for handling changes, such
as a format change, in real-time without making major changes to the proposed
but some additional analysis is required.

2.1.4 Database
2.1.4.1 Schema

The schema required to support this model in a relational database consists of
roughly one table for every class whose columns or fields correspond to the
member variables of a class and a row to an 'object instance’. In general, the
key to a row is an index which may be stored in the attributes of another row of
another table (or class) to allow the key holder to create an instance of the first
class. For example, if an instance of a channel class requires floating point
conversion by the polynomial method, the channel class table will name the
polynomial method class type (integer) in one of its fields and the row index
(integer) in another field, for pointing to the correct set of coefficients within the
polynomial method class table.

Other information that may be useful for storing in the database but not covered
elsewhere:

() Scheduling information for the purpose of automating processing in a
multi-satellite system

(i) Metrics for costing by class name or hierarchy, number of interfaces,
etc.

(i) Tables about the users for supporting authorization. For example, the
user interface may first get authentication from the user and then use
the user name for looking up authorization on that user to see if he/she
is allowed to operate the system for a particular satellite or view one
type of display and not another. Note that Oracle, and maybe others,
have features for individual and group ownership of data (in the

Report 11173

database). This is good only for viewing, adding and deleting data
from the tables in the database and doesn'’t appy to the processes
outside the database.

2.1.4.2 Utilities

Database utilities are the tools for supporting changes to the database which are
normally associated with the software development and software maintenance
phases, mentioned earlier. New satellites that are similar to other satellites
stored in the database which don’t require new tables (or classes) can be added
to the ‘system’ through SQL without any software changes.to the Back End and
hopefully, Front End as well. If user interface for the system is designed to
retrieve information from the database (regardless of whether it uses the
framework), then menus and options will also be updated through utilities.

Utilities may also include support for the software design phase associated with
extending the system by generating rough drafts of interface specifications
based on information stored about another spacecraft and automatically
changing details according to parameters entered by the user. After the rough
draft is created, additional changes are edited by hand in a text editor according
to some set formatting rules defined for the utilities. Later, another utility may be
used to read and parse the new interface specification for creating SQL insert
statements and using the DBMS APIs for putting the new data or even new table
schema into the database. If the integrity constraints are in place, some errors
will be caught and the database may be rolled back.

Other ideas to consider for developing utilities:

(i) Functions for costing based on interface specification and metric
tables stored in database.

(i) Utilities for generating rough drafts for test scenario documentation
and possibly the test scripts themselves.

Utilities could probably be forced to fit the proposed framework (or vice versa)
but it may be much easier to develop these utilities or tools in a language such
as Perl or PL/SQL (Oracle) outside the framework.

2.1.4.3 Integrity Constraints

Integrity constraints are the features for putting constraints on data added,
updated or deleted from the database tables. For example, a constraint could
be defined on a field to allow only values that are in a specified set of numbers.
This is important because errors that would have been caught in the past by the
compiler through the use of user defined types (e.g., enums) must now be
caught by the DBMS through integrity constraints features.

10

Report 11173

2.1.5 User Interface (Ul)

No attempt was made to seriously model the Ul for some of the same reasons
given in the section on Displays. That s, it is preferable to use one of the GUI
building tools some of which are platform dependent, come in their own
framework and use design patterns which make it difficult to port classes from
one set of tools to another (1.E., from one platform to another). RogueWave
claims their zZApp produces platform independent GUI code through the use of
zApp APls and plug in code for calling the underlying operating system. zApp
comes with Object Factory for designing the GUI objects in conjunction with the
database similar to the approach used in this model. So it would appear that
these software tools support our approach.

Regardless of the model, the Ul may benefit from the use of a database by using
it to retrieve information for building it’s list of options at runtime, to avoid hard
coding these. Again, this will depend on the tools selected because some tools
do not support the capability to build menus from an array of options of
indeterminate size, at runtime. Aside from the database, the user interface may
benefit from other aspects of the approach but not to the extent that the Back
End benefits.

2.2 Design
2.2.1 Back End
2.2.1.1 Overview

To understand the design of the Back End, we first need to look at the sequence
diagram in the Figure 5.

11

Report 11173

]

] |

|___request processing L

! = T Build

: Phase

I I 11 Buila
! | Phase
i e s

t Process

t Phase Process
{ Phase

1 < Data B

i - < <

|

!

|

|

|

' T

|__stop processing . stop processing™* i

***Note: May have several ways
to stop. E.g., eof, end timetag, user stop cmd.

Figure 5. Sequence Diagram For The Back End

This diagram illustrates:

() The DMAD receives a request for processing which could be from the
User Interface. _

(i) The DMAD instantiates and builds its own object structure for
performing the requested processing.

(i) The DMAD produces a list of data types needed for it's processing at
the end of its build phase. The list becomes a request to the DEAD.

(iv) The DEAD receives a request from the DMAD and builds a structure
for producing the requested data types while DMAD waits for input.

(v) The DEAD starts its processing phase and outputs the requested
types to the DMAD.

(vi) The DMAD processes data received from the DEAD.

(viiy Eventually, processing ceases when (a) DEAD reaches EOF, and
notifies DMAD or (b) user notifies DMAD to terminate, and DMAD
notifies DEAD, etc.

Report 11173

2.2.1.2 DEAD
2.2.1.2.1 Overview

Figure 6 gives a sense of how the DEAD is structured from the abstract class
types. What the abstract types in this figure do not show is how the "Flyweight"
design pattern is applied and modified for this design so that a channel object
instance always processes the same channel type for the entire stream so that
channel classes are not instantiating and destructing as data is processed. The
result of this approach may be improved performance.

Request
Builder

Frame-sync
Data -reeanen)
from File

ExtractMajorFrame |

\\ 1 \\
\\ \
. A Y
Y ExtractMinorFrame I .
Ay

\\ 1 \\
A \
\
\ ProcessChannel* l:—‘\—;._
A Y

Figure 6. DEAD - Extracting and Decommutaﬁng (Class Model).

2.2.1.2.2 Build Phase

Figure 7 shows the object structure at the end of the build phase and the flow of
control as the structure is being built.

13

Report 11173

Request Index RequestReceiverT »f
; DbmsIf
I_Controller i]
:ﬂa ":]
_ T
T - === ==-=c-====

1
svesasaneasiacsnonandoiacaninainaainaacnan e P M

lRequestBuilde% | l“ ﬁ?“&?e i _______ ¥ u 1

e

ey £

1
1
!
1
i
¢ ExtractMajorFrame |

lg 10 (abs) '

1
o
Y

P asvren Ferg)

£

i

j"’ ProcessChannel

actMinorFrame l
X

Figure 7. DEAD - Build Phase (Object Model)

Initially, the DEAD is made up of a very small core of classes. This core only has
the capability to receive and process a 'request’ for data from the DMAD.

After the request is received, the DEAD grows from the small "core" into a much
larger structure by instantiating and initializing classes needed for processing the
input data. At first, the “RequestReceiver” queries for the “Controller” type
(Controller or maybe even ControllerDead) needed for this process. When the
“base” classes are initialized, the request table is queried for the input data and
the list of output data needed by the DMAD. The input may have information in
the database about its location (E.G., node, path, file name, version, or socket
description, etc.), data type (E.G., major frame types) and file format which gives
the Source class enough information for instantiating the 10 and class described
as the input type, underneath.

The DEAD builds a "chain" of processing type classes from the input type, that
are needed for extracting and decommutating the requested output types. Each
time the DEAD branches, the database is queried for atiributes to initialize the
class member variables. During this initialization, the new object will use
information from the attributes and the request to decide whether to produce
another level of objects. For example, (a simplified explanation) the minor frame
objects will have attributes, possibly an SQL string, for finding its channels in the

14

Report 11173

database. The channels (rows), once located, will be instantiated and owned by
the minor frame object. In this example, DSP will have 128 rows in the minor
frame table resulting in 128 minor frame objects. Each of these minor frames
will find about 128 rows in the channel table and instantiate the ones listed in the
request.

When one of the channels is reached, the frame must pass a pointer to each
channel object so that classes can retrieve time tag bits or retrieve other
information which will allow to retrieve the time tag later. There are at least two

possible strategies for handling time tags in channels but they are not discussed
here.

When the build phase is complete, the DEAD is ready to process and doesn't
require further use of the database.

2.2.1.2.3 Process Phase

Figure 8 shows the object model for DEAD processing and the flow of control for
extracting and decommutating channels from the data stream. Notice that data
is read in at the "Source" and output at the "Sink" and the dashed lines show the
direction data travels to output.

from File ¥

R ExtractMajorFrame |
i
i
1

V;_:i %?(tractMmorFrame ‘
H

R B 8T [1o@s] . .

[

Figure 8. DEAD - Process Phase (Object Model)

15

Report 11173

In practice, it is better to pass along pointers to the data buffer and calculate new
offsets rather than extracting and copying data at each level, as the class name
implies, until the 'leaf' node is reached. Finally, the extracted channel and time
tag data are treated simply as a sequence of bits with no other type information.

2.2.1.3 DMAD
2.2.1.3.1 Overview

Figure 9 illustrates the DMAD structure using abstract classes in the ‘chain’.
Figure 10 illustrates the DMAD structure for display formatting with specific
subclasses named in the ‘chain’, mainly.

A

Application

5 |
; RegisterLinks

| RequestReceiver |

)
1
1
1
)
t
)
1
1
1
1
1
e

Request
Builder

Figure 9. DMAD - Abstract Class Model)

16

Report 11173

RegisterLinks
et = imieieeieiobAlubiebibl b DbmsIf

Request
Builder

A B Ty 10 -
from A | !
the it FormatDisplay (abstract) T
DEAD IO b ,]
[ExtractChannel I | FormatChannel* S

] 1 ‘
l ServerForData I ProcessChannel* LT ./

/

s

’ 1 1) ’
: I DescriptChannel* “chain”

n y))/
I ExtractChannel* i

Figure 10. DMAD - Display Formatting (Abstract Class Model)

Both figures show a "core" and "base", like the DEAD, made up of
RequestHandler, Controller, Source, Sink, and RequestBuilder classes. Also,
like the DEAD, the DMAD has a "chain" that uses a modified version of the
"Flyweight" design pattern.

The main dissimilarity between DEAD and DMAD is how the "chain” hangs. In
the DMAD, the "chain" hangs from the Sink and from the DEAD it hangs from the
source. With the use of features not presented in this report, it should be
possible to configure the DMAD to include processing performed by the DEAD or
reconfigure the two chains to break up work differently between the two
processes. '

From the chain, are "offshoots". In general, offshoots are subclasses in the
"Strategy" or "Bridge" design pattern for doing work on behalf of the class using
them. Without these offshoots, the owner class would require subclassing and
lose generalization. Without generalization, it becomes more difficult for the
architect to design the chain into the database for processing the data. Figure
11 shows the ‘chain’ segment and examples of ‘offshoot’ classes for formatting
data for a display. Figure 12 shows the same ‘chain’ segment for formatting a
list display.

17

Report 11173

| FormatChannel (abstraby) I

o1 O
ProcessChannel

A

I DescriptChannel l
ExtractChannel

|2 SRS S STV
[“Offshoots” ================espe=c-sno--osscsesoopasescfonoesms o '

1
: - ! ! . :
' DeriveMethod Conversion || AlarmCheck | | TimeTag ChannelFormat FormatMethod :
' (Abstract) (Abstract) (Abstract) (Abstract) | | Method (4bstract) (Abstract) '
: :

1

Figure 11. DMAD - Chain Segment & Offshoots (Abstract Class Model)

18

Report 11173

Fommms “ehain” +==========cmcmmmmme e c e e e e '
E I FormatDisplayList (abstract)

i 07 0
s axe
E ProcessChannel

I FormatChannelForListDisplay (abstrdt) I 1
] i
IQ '

l DescriptChannel]

ExtractChannel

Fomees “offshoots” =-=====-=-=<==-r=-fp==r--ceecomcsecoope-oochesoooooonnooes '
1

E | I I | :
' DeriveMethod Conversion || AlarmCheck | { TimeTag ChannelFormat ‘ormatMethod !
J (Abstract) {Abstract) (Abstract) (Abstract) | | Method (Abstract) (Abstract) !
i ;
]

Figure 12. DMAD Chain Segment & Offshoots - For List Display Formatting (Class Model)

2.2.1.3.2 Build Phase

Figure 13 shows the order and depth of building for display formatting given the
input data consists of specific major frames (on the DEAD input) and the display
requires a number of generic channel types (e.g., subsystem “bus current”).

Like the DEAD, the DMAD starts with a very small "core" for receiving and
processing a 'request' from the user interface. The 'request’ specifies an
instance of a Display (IE display class type and row index) and the input data to
be processed by the DEAD. With this information, the DMAD builds a "base”
and a “chain” of classes using the database to fill the attributes of one class and
using the factory to build the next.

The "chain" is built in much the same way as DEAD except that growth starts at
the Sink class from the requested display instance (or some other ChainProcess
subclass type) and list of generic channel types and builds backwards towards
specific extracted or decommutated data types. See figure titled "Using DBMS
for Building a Chain of Classes in DMAD".

19

Report 11173

______ RegisterLinks

T .

: s
i ya
i | Reffiest
i | Builder || Sopee i
i r L) '_‘J)
- — L FormatDisplay (abstract v '
10ty [' | pay ,(‘ff%%‘-w-)f ==~ 70 @by
L] I’ ‘,? . ’4" ,g II/ J
Extract®@hannel FormatQh?n’nel* /!
i, | S |1 /
l ServerForData | l ProcessChanfiel* ,'l
1y ,
/,I ﬁl 1 Il
; fDescrip@Ckz;nnel* “chain”

! 2 > ,ﬁg‘, 2
E I ExtractChannel® ,"

Figure 13. DMAD - Build Phase (Object Model)

The DMAD produces several small offshoots from the chain of processing
classes. These offshoots are subclasses in the "Strategy" design pattern for
performing floating point conversion, alarm checking, etc.

At the end of the build phase, the DMAD generates a list of extracted data types
and indexes to post in the database as a request to DEAD and passes an index
into the request table or ‘request ID’ to the DEAD. Afterwards, the DMAD is
ready to process and just waits for data to arrive from the DEAD. Like the
DEAD, it no longer requires the use of the database after the build phase is
complete.

2.2.1.3.3 Process Phase

Figure 14 shows the direction data travels from the input at the Source to the
output at the Sink for formatting a display.

20

Report 11173

[106bg) }—| BxtractChannel | | FormatDisplay (abgracy [~ 10.@59)| ., Dispay
A 1] //
i :, l FormatChanxiel* |
I ServerForData l E //'
‘ E rProcessChannél* I
S l DescriptChanilel* I
: /
s >

ExtractChannel*

Figure 14. DMAD - Process Phase (Object Model)

2.2.2 Front End
2.2.2.1 Overview

Front End processing was not studied well enough to provide a design in this
report. :

We can say that the design for the Front End will include the same "core” and
"base" classes introduced in the section describing Back End design. The Sink
class, however, may have multiple I0(abs) for outputting data to files for different
formats or simply to save bad data in a separate file. It is not known whether a
“chain" should be used here but the other design patterns and approaches
previously mentioned should be applicable here for meeting the objectives stated
in this report.

2.2.2.2 Build Phase

The Front End has a build phase similar to the one described in Back End.
However, Front End processing will most likely be performed within a single
process (for a given satellite), unlike the Back End which is divided into two
processes.

21

Report 11173

The Ul (or possibly an automated scheduling process) will put in a request for
processing a stream of raw data received from a specified satellite. This will
provide the initial attributes for building the Front End and build one step at a
time, just like the Back End. Ideally, the front end would be built with the
capability to process all data types (all Major Frames) for a given satellite due to
a certain amount of unpredictability in the stream but as stated earlier, will
require more study.

2.2.2.3 Process Phase

When the data starts to process, an entry is made in the database describing the
new file or socket stream, etc. in terms of satellite number and data type(s) and
file-path or socket. Depending on a number of variables, this entry in the
database could be updated periodically to show the time stamp of the latest data
and whether the stream is still being acquired.

No additional information is available about the process phase.

2.2.3 Displays

As stated earlier, no attempt was made to model this code.

2.2.4 Database

No attempt was made to model the database utilities or schema further.

2.2.5 User Interface

No attempt was made to model the User Interface.

2.3 Framework

Figure 15 shows a skeleton application for the Front End, Back End and possibly
the Displays.

22

Report 11173

V7 [

' Legend

Ly New table needed in RDBMS
8 when defining new subclass

1 :
| Mypp |

myApplication

r
)
)
t
]
t
L}
L
L
1
L
L}
1
.

1§ Existing table

RequestReceiver t Subclass to be defined
_ 1 for processing.

Existing class in

Cox;t:‘oller framework from which
myController new code may be subclasse

Source or
mySource Request Sink
- Builder or mySink
===l C ham : N P
p o 11V : : !
_! Process(abs) : : Process(abs) : mylo

Figure 15. Framework

Figures 16 and 17 show the inheritance hierarchy of classes used in Back End
processing.

23

Report 11173

Factory
BasicType
A Dbmsif
I [| - [[I
equest i
Controller| | Source Sink Handler 10 Ch‘l’,‘:‘occ o| fapplication
abs ai)s abs
| I T R I-'t"'" l__i—'; r_m_yCIhaTn_‘ I'_t'__I
I | mySource | mySink : Request Request | | mylO g

my
j:zzrolle;: !

Receiver Builder 1 ! Process 1 jpﬁcaﬁon'
I |

Figure 16. Framework Class Inheritance

| :ChainProcess

A

] :Extraction :FormatDisplay l :FormatData

T ry ry A A
:FormatMajorFrame
- ExtractMajorFrame sFormatDisplayList
I :FormatMinorFrame I
I :FormatChannel

A A A

:Extract MinorFrame :FormatDisplayPlot

:Extract Channel
| :Description |
T A
é: Descript MajorFrame

: Descript MinorFrame

¢ DescriptChannel

:FormatDisplaySubsystem ” :Processing I

A

ProcessMajorFrame

. :ProcessMinorFrame |
! :ProcessChannel I

! :FormatChannelForDisplayList
i;FormatChannelForDisplayPlot I

! :FormatChannelForDisplayModel l

Figure 17. Class Inheritance For ChainProcess

24

Report 11173

2.3.1 Main Routine (Not a Class)

This is not a class. This is a very small generic main routine that passes
arguments and control to the Application. The "Main" source code may be used
in all applications derived from this framework without being recoded.

2.3.2 theApp Routine (Not a Class)

This is not a class. This is a file with one line for instantiating the "Application”
subclass. Unlike "Main", every application with different "Application" subclass
will require its own "theApp" to instantiate the subclass and should have a
unique name to hint at which "Application" subclass is being instantiated.

2.3.3 "Application" Class

In general, "Application" handles the arguments, cleans up at the end of
processing and instantiates the "RequestReceiver” subclass. Applications in the
framework will most likely require "Application” subclasses only when a different
set of arguments are passed in through "Main". The subclass code may be
simple enough to be reused by most other applications developed from this
framework.

Note that "Main", "theApp", and "Application" are presented here to promote
consistency among applications developed from this framework and for reused
of code. The classes, below, do not require this approach other than for starting
the application so if a set of software tools provides another method of entry into
the framework, there is no reason it shouldn't be used.

2.3.4 "Factory" Class

This class is a modified version of the 'Factory' design pattern. It is used in this
framework for instantiating classes on behalf of other classes for hiding specific
subclass types from the class using Factory. In this design, Factory passes the
table name and table index to the new object so that it can retrieve it’'s attributes
from the database. Afterwards, a pointer of the new object, casted to an abstract
type is returned to the requester where polymorphism may be applied.

2.3.5 "Dbmslf" C!ass

This is a class for accessing a DBMS account (relational or object onented) The
class structure of this was not been developed for this report.

RoqueWave provides DBTools.h++ which may be applicable to this class.

25

Report 11173

2.3.6 "List" Class

A container like class is necessary for handling an array of "ChainProcess”
objects.

RogueWave's Tools.h++ provides a class with this functionality and another
class for iterating through the List.

2.3.7 "BasicType" Class

"BasicType" is an abstract class from which almost every other class in the
framework is derived.

RogueWave's Tools.h++ provides an abstract class that works in the framework
defined by RogueWave. To use Tools.h++, it may be necessary to subclass
from RogueWaves abstract class to add the features needed for this framework.

2.3.8 "RequestHandler" Class (Abstract Class and Derived from BasicType)
This is a parent class to RequestReceiver and RequestBuilder

2.3.8.1 "RequestReceive" Class (Abstract Class and Derived from Request
Class)

This class is for starting the build process after it receives a request. The
'request' could be as simple as an integer index into the database which may be
used to look up the top level process class (output type) and the data source
(input type) for building the structures needed for processing. In this scenario,
RequestReceiver is almost superfluous but it is better to build this in than to try to
add or change it later if another way to pass a request is chosen for this design.

This class may require further subclassing if other methods are used in this
framework for passing requests.

2.3.8.2 "RequestBuilder" Class (Derived from Request Class)

This class is for building a 'request’. DMAD builds a list of specific channels
names or data types and passes this information to the RequestBuilder to put
the information in the database where it can be read by the DEAD and send an
index number to the DEAD for finding that information. The User interface will
put the information selected from menu by the user in the database to be
accessed by the DMAD.

26

Report 11173

This class may require further subclassing if other methods are used in this
framework for passing requests. However, this class has not been studied well
enough to determine whether it uses additional classes for performing it's job.
2.3.9 "Controller" Class (Derived from BasicType)

This class defines the top level processing or "base" classes. RequestReceiver
will find the Controller subclass type stored in the request in the database and in
turn instantiate the Source, Sink, and RequestBuilder subclasses and do
whatever is needed for initializing.

2.3.10 "Source" Class (Derived from BasicType)

This class is responsible for instantiating classes for reading data into the
process (DMAD,DEAD, etc.) from file, RPC, TCP/IP socket, etc. and subclasses
for accessing the data.

2.3.11 "Sink" Class (Derived from BasicType)

This class is a mirror image of "Source". It is responsible for instantiating
classes that perform output.

2.3.12 "lIO" class (Abstract Class and Derived from BaseType)
Subclasses of "IO" perform input and output of data into the process. One is
instantiated at the Source (input) and one at the Sink (output). In a Broker
architecture this approach may need to be slightly modified.
Some possible subclasses for "IO" may include:
IIIOII

+->"|OFile" class (Abstract Class)

+->"|Opipe" class (Abstract Class)

+->"|0Osocket" class (Abstract Class)

+->"|OsocketTcp" class (Abstract Class)

| +->"IOsocketTcpClient” class
| +->"IOsocketTcpServer” class

I
+->"|OsocketUdp" class (Abstract Class)

|
+->"10socketUdpClient" Class
+->"|0socketUdpServer" Class

27

Report 11173

2.3.13 "ChainProcess" Class (Abstract Class and Derived from BasicType)

This is the parent to a group of subclasses that process the data. The name
implies that processing may be linked together using the attributes and
information in the database.

The subclasses that follow are subclasses needed for Back End processing.
2.3.13.1 "Extraction" Class (Abstract Class and Derived from ChainProcess)
This is the parent to a group of subclasses that perform extraction of the data.

2.3.13.1.1 "ExtractMajorFrame" is a subclass of "Extraction” used to maintain a
list of DataMinorFrames, calls another class to read in a specified amount of
data, finds the next instance of DataMinorFrame which recognizes the data, and
passes a copy of its object pointer out to output if the major frame was also
requested (although unlikely).

2.3.13.1.2 "ExtractMinorFrame" is a subclass of "Extraction” used for
"extracting” the minor frame pointed to by Major Frame and managing a list of
channels and putting it's own data out to output, if this (extracted) minor frame
was also requested.

2.3.13.1.3 "ExtractChannel" is a subclass of "Extraction" used for
decommutating its channel pointed to by Minor Frame.

2.3.13.2 "Description" Class (Abstract Class and Derived from ChainProcess)
The subclasses of "Description” maintain information about how the data was
originally designed to be processed. This normally applies to channel data but
for completeness, Major Frame and Minor Frame are included here.

If allowed, it will instantiate those methods and classes for processing the data.
Otherwise, the "Processing" subclasses may override the methods in the
Description classes with its own methods specified within "Processmg class
attributes.

2.3.13.2.1 "DescriptMajorFrame" is a subclass of "Description”. It is included
only for completeness.

2.3.13.2.2 "DescriptMinorFrame" is a subclass of "Description”.

28

Report 11173

2.3.13.2.3 "DescriptChannel" is a subclass of "Description”. DescriptChannel
will describe (own or link to) one or more ExtractChannels. Owning or linking to
two channels is one way to accommodate derived channels.

2.3.13.3 "Processing" Class (Abstract Cléss and Derived from ChainProcess)

This class exists solely for the purpose of providing a means of customizing
display formatting performed on the DMAD.

2.3.13.3.1 "ProcessMajorFrame" is a subclass of "Processing”. This class
name is included only for completeness.

2.3.13.3.2 "ProcessMinorFrame" is a subclass of "Processing”.

2.3.13.3.3 "ProcessChannel" is a subclass of "Processing”. This class
provides a means of customizing channel processing as in the case when an
analyst customizes an instance of a display by changing alarm limits. This class
owns or links to a "DescriptChannel”.

2.3.13.4 "FormatData" Class (Abstract Class and Derived from
ChainProcess". The subclasses of this class format data for including in the
FormatDisplay class. The subclasses could be as follows:

2.3.13.4.1 "FormatMajorFrame" is a subclass of "FormatData". This class
name is included only for completeness.

2.3.13.4.2 "FormatMinorFrame" is a subclass of "FormatData".

2.3.13.4.3 "FormatChannel" is a subclass of "FormatData". The subclasses of
this class formats a channel for one of the FormatDisplay subclasses. This class
links to or owns a "ProcessChannel". Some of the subclasses of this type may
include the following:

"FormatChannelForDisplayList"
"FormatChannelForDisplayPlot"
"FormatChannelForDisplayModel"

2.3.13.5 “FormatDisplay” Class (Abstract Class and Derived from
ChainProcess).

The subclasses of this class format a list of channels or other data type into
frames and files according the attributes for a given instance of a display.

2.3.13.5.1 "FormatDisplayList" is a subclass of "FormatDisplay" for formatting
frames of data into file for List displays.

29

Report 11173

2.3.13.5.2 "FormatDisplayPlot" is a subclass of "FormatDisplay" for formatting
frames of data into file for plotting one or more channels.

2.3.13.5.3 "FormatDisplaySubsystemModel" is a subclass of "FormatDisplay"
for formatting frames of data into file for displaying subsystem models.

2.3.14 "AlarmCheck"

This is an abstract class for performing Alarm Checking. Subclasses may
include:

"AlarmCheckFIitPnt"
"AlarmCheckNone"
"AlarmCheckStatus"

2.3.15 "ConversionChannel"

This is an abstract class for converting raw channel data into another data type.
Subclasses may include the following:

"ConvertFitPnt"

"ConvertFltPntTable"

"ConvertFitPntcoef"

"ConvertFltPnt5coef" is a subclass of "ConversionFitPntcoef".
"ConvertFltPnt4coef" is a subclass of "ConversionFitPntcoef".

2.3.16 '"TimeTag"

This is an abstract class for formatting and interpreting the time tag bits. This
class was not analyzed but subclassing might be according to clock type.

“TimeTag_UTC” for time stamp in UTC
"TimeTag_Dsp” for DSP satellite clock time stamp
"TimeTag_Ufo” for UFO satellite clock time stamp
2.3.17 "DisplayFormatMethod" belongs to the strategy "offshoots" classes.

Subclasses may include:

"DisplayFormatMethod_Frame"
"DisplayFormatMethod_File ".

30

Report 11173

2.3.18 "RegisterForData" is a class for keeping track of classes in the DMAD

"chain" during the build process so that an object can be used in more than one
link at a time.

2.3.19 "ServerForData" is similar to "RegisterForData" except it applies to
copying ExtractChannels just received from the DEAD to other ExtractChannels
after first determining the 'instance of the subclass' of the first.

2.4 Software Tools

RogueWave provides tools and C++ classes for a low level framework which
appear to be compatible with the framework developed in this report and tools .

See web page http://www.roguewave.com/products/products.htmi for more
information.

Tools.h++ Professional
DBTools.h++

zApp

ObjectFactory

31

Report 11173

Test
3.1 Description

The test was to implement a small demonstration to show proof of concept. The
model chosen to demonstrate the validity of most of the approach stated in
Section 1.3, was a simplified version of the DEAD. The code for this test was
written in C++ and used the APIs to a RDBMS for accessing an account with
schema and attribute data for extraction of channels and minor frames.

3.2 Model

The model used in the demo is illustrated in a figure titled "Proof-of-Concept
Design". Notice that the names of classes and subclass hierarchy do not
necessarily match the names given in the Framework or the DEAD model but the
model that was used in the "Proof-of-Concept" is similar enough to the DEAD for
verifying the approach described earlier. Print statements were used to show
the stages of the build phase and the results of the decommutation process.

The database contained only a small subset of the rows needed for defining
every channel in the DSP Link 2 frame.

ltems in the approach used in the demo included:

(i) Use of integer types for assigning class types to fields in the
database.(RTTI was not available in the compiler used to develop the
demonstration so integers were hardcoded and a switch statement
was used in the Factory for instantiating the correct class).

(i) A modified Factory Design Pattern: "Factory"

(i) Common Abstract Parent Class: "SomeAbsType" (named "BaseType"
in the report).

(iv) Retrieval of attributes from the database by calling "DBMS" (named
"DbmslIf" in the report) and passing an SQL string.

(v) A modified Chain of Responsibility Pattern through mechanisms mainly
built into the common abstract class.

(vij DBMS query for retrieving attributes: using SQL passed to "DBMS".

(vii) Use of the Strategy and Bridge Design Patterns in "DataMajorFrame”
(or "ExtractMajorFrame” in report) to "DataMinorFrame" (or
"ExtractMinorFrame" in report) and "DataMinorFrame" to
"DataChannel" ("ExtractChannel" in report) through the use of the
parent class "Data" ("Extraction” in report).

For the sake of meeting the schedule, the data in the database was limited to
two types. The first was only defined for six channels in the DSP Link 2 which

32

Report 11173

resulted in entering 6x128 rows in the DataChannel (or ExtractChannel) table in
the database. The second was a small made up example set of channels.

Note that one very slight design error was inadvertently introduced during
coding and several shortcuts were taken but neither the shortcuts nor error
detract from the objectives of this test. ’

See Figures 18,19, and 20 for models of the proof-of-concept demonstration.

MAIN

TestApp

@

ApplicationCCC

)4

RequestHandler
(same as Request
Receiver in Framework)

ControllerDead

SourceDatae

Controller

h

SomeAbsType
(same as BaseType
in framework)

Data (same
as Extraction

T

ReaderFile

Figure 18. Proof-of-Concept Demonstration (Class Model)

DataChannel

DBMS
(same as
Dbmslf)

33

Report 11173

DataBase

pasesesasireciitiacancnnans

: Request Table :

: ReaderFile Table

i 1entryforl

 “simulated” DSP £
: Data File :

DataMajorFrame Table
1 entry for DSP (link-2) :

i DataMinorFrame Table
: 128 rows/for link-2

> l ReaderFilﬂ

e

| BppTicaiionCCC T Maim |~
1

{RequéstHandler |
[
_| ControlterDead]|

~

S?urceData

|
; |

!

Dsi_t_gM_zl_im;Frame I

1 |
!
128
l DéEMigor_lf_r?me I
11l

only 6rows per minorframe

|
l @_gtag!lag_l_lel ! - _

were defined for demo

Figure 19. Proof-of-Concept Demonstration - Build Phase (Object Model for Dsp)

34

Report 11173

128
l Dé_t_gMigon:li rame l
1|k

|
l Ié)_zitaglay_l_xel] . ’

Figure 20. Proof-of-Concept Demonstration - Process Phase (Object Model for Dsp)

3.3 Results and Lessons Learned

All items included in the demonstrations, proved to work successfully. The build
phase turned out to be much slower (several minutes) than expected while the
process phase performed as well as expected. The amount of memory used
appeared to be less than what was being used in some root processes running
on the same workstation. However, if all the bytes in the DSP Major Frame
were defined for channels, the DSP Major Frame would have produced 16,384
rows in the "DataChannel" Table (rows = 128frames x 128bytes), with an equal
number of DataChannel objects instantiated. The build process would have
taken longer to instantiate 20 times as many channels, and used almost 20 times
as much memory. Assuming a database could support all the attribute data
required by the model, the framework and model should be designed to support
multiple accounts for storing satellite specific data in separate accounts and
other data in a joint account. Obviously this issue requires more study.

35

Report 11173

Conclusions

The study described in this report shows that an extensible design for processing
telemetry in a multi-satellite system can be developed using several commonly
used object oriented design patterns combined with a new approach of using a
DBMS for retrieving attributes for initializing an object during run-time. The
original intent of using a database was to reduce the number of subclasses for
some class hierarchies by generalizing classes and externalizing the attributes
and to simplify the effort of extending a system by shifting the work from software
" maintenance to database management. After some analysis it became clear
that this approach adds several subtle improvements over a non-database
approach including reducing the complexity by using the attributes in one object
to find and build the next object layer until the structure was complete. As long
as no new classes or subclasses are needed, this instantiate-and-initialize one-
class-at-a-time approach, built into the framework, allows the software to be
extended simply by inserting the processing, stream, and display attributes into
the database.

The framework, developed from these approach, is mainly for back end and front
end processing and does not adequately address display or GUI designs.
However, the approach could easily be applied to these areas using design
patterns which are more appropriate to displays and GUls.

36

Report 11173

Bibliography

Books:

Bamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John; “Design
Patterns” Addison-Wesley, Reading MA. 1995

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; Stal,
Michael; “A System of Patterns” Wiley New York, NY 1996

Eckel, Bruce “Thinking in C++” Prentice Hall, Inc., Englwood Cliffs, New Jersey
1995

Fowler, Martin and Scott, Kendall “UML Distilled” Addison-Wesley, Reading MA.
1997

Muller, Pierre-Alain “Instant UML” Wrox Press Ltd., Birmingham, 1997

Cooper, Richard; “Object Databases, An ODMG Approach” Thomson Computer
Press, Boston MA, 1997

37

Report 11173

Glossary

1. Back End: As used in the report, this is the area of a telemetry system for
extracting and processing telemetry data. It is performed after data has been
processed by the Front End.

2. Channel. This is usually a few bits of information extracted from the stream
for describing a sensor. This is also referred to as a mnemonic, sensor,
word, data number (DN), etc. :

3. Decommutate. This is the process of extracting the channel. from the
stream.

4. Front End. This is the processing is usually associated with frame
synchronization, decoding, decrypting, time tagging the data. This
processing occurs before Back End processing.

5. Obiject Instance. This expression describes an object which has had it's
attributes set for some specific subclass-like behavior.

6. Run Time Type Information. Also known as RTTI. This is a recent feature to
some C++ compilers for converting class types and data types to integers
and back again.

7. Sync Code. This is bit pattern at the beginning of a frame used for frame
synchronization.

38

DISTRIBUTION LIST

AUL/LSE
Bldg 1405 - 600 Chennault Circle
Maxwell AFB, AL 36112-6424 lcy

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 2 cys

AFSAA/SAI
1580 Air Force Pentagon
Washington, DC 20330-1580 1cy

AFRL/PSTL
Kirtland AFB, NM 87117-5776 2 cys

AFRL/PSTP
Kirtland AFB, NM 87117-5776 1cy

GenCorp Aerojet

P.O. Box 296

1100 West Hollyvale St

Azusa, CA, 91702-0296 lcy

AFRL/VS/Dr Fender
Kirtland AFB, NM 87117-5776 lcy

Official Record Copy
AFRIL/VSSS/George Schneiderman
Kirtland AFB, NM 87117-5776 2 cys

SMC/CW
155 Discoverer Blvd
El Segundo, CA 90245-4692 lcy

SMC/XR
180 Skynet Way 2234
El Segundo, CA 90245-4687 lcy

Lockheed-Martin Astronautics

Flight Systems

Attn: Dr. Noel W. Hinners, MS S80000

12257 State Highway 121

Littleton, CO 80217 lcy

39

TRW Space and Electronics

Attn: Joanne McGuire

1 Space Park

Bldg R10, Rm 2826

Redondo Beach, CA 90278 lcy

Boeing

Attn: Mike Mott

2201 Seal Beach Blvd

Seal Beach CA 90740 1cy

Hughes Space and Communications

Attn: Dr. Tom Brackey, MS S312

2260 E. Imperial Highway

El Segundo, CA 90245 lcy

40

